About in-vehicle infotainment

Infotainment is one of the key megatrends fueling the pervasiveness of microelectronics in cars. Users want to be connected and conveniently access their personal content anywhere, anytime, on all of their devices. The in-vehicle becomes just another node in the network, an extension of the user’s digital and social lifestyle (see this article’s lead-in photo). A “connected” car is also more comfortable, safer, and energy efficient, having early access to important information such as weather reports, traffic jams, or road accidents. According to a recent study, 60 percent of new cars will be connected by 2017. Given this scenario, in-vehicle electronics are dictating features in the car, and the innovation cycle time is becoming shorter and shorter. Meanwhile, a key to this automotive infotainment innovation is the system’s enabler: memory.

 

refer to: http://embedded-computing.com/articles/automotive-industry-innovation-driven-electronics/#at_pco=cfd-1.0

Embedded computers are just alright

Industrial computer, Panel PC, networking appliance

“Back in the 2005 timeframe, Northrop Grumman had hundreds of data centers and consolidated them down to five data centers in 2011,” says Joe Cloyd, Director of Technology, Defense Cyber Security and Enterprise Services at Northrop Grumman (www.northropgrumman.com). “In our next round of Embedded Computer consolidation we will go down to three enterprise data centers. The DoD will eventually do this as well, consolidating each respective network, and far down the road of embedded computer a totally segregated approach to having multiple networks with duplication.”

 

refer to : http://mil-embedded.com/articles/cloud-security-the-dod/

 

Brand New Rackmount 1U Networking Appliance System with 3rd generation Intel Core i processor

 

ANR-IB751N1/A/B networking appliances.

 

 

ANR-IB75N1/A/B is a rackmount platform (440x372x44mm) which can be installed in the 19” rack. It can carry a 3rd generation Intel Core i i3, i5, i7, or Pentium processors to deliver higher efficiency, increased processing throughput, and improved performance on applications. ANR-IB75N1/A/B also comes equipped with a maximum 16GB DDR3 memory and optional 2 or 4 x SFP and 8 x LAN ports. System Integrators can select different configurations for their network appliances. It offers the best P/P ratio in applications like the UTM, IDS/IPS, VPN, Firewall, Anti-Virus, Anti-Spam, RSA gateway, QoS, streaming.

ANR-IB75N1/A/B uses 80 Plus PSU which reduces energy consumption and helps protect the environment. The software and hardware configurable LAN bypass feature also prevents communication breaks due to power loss or system hang-ups. In addition to Intel long life support chipsets, ANR-IB75N1/A/B is designed with a long-term support of 5 years.

 

Industrial computer, Panel PC, networking appliance

 

 

Key features:

1. Support 3rd generation Intel Core i LGA1155 i3/i5/i7/Pentium cores processor

2. Intel B75 Chipset

3. DDRIII DIMM x 2, up to 16GB memory.

4. Intel 82576EB x 2 Fiber ports

5. Intel 82574L 10/100/1000Mbps x 8 ports

6. Two pairs LAN ports support bypass feature (LAN 1/2 + LAN 3/4)

7. LAN bypass can be controlled by BIOS and Jumper

8. CF socket, 2.5” HDD x 2, SATA III x 1, SATA II X1

9. Console, VGA (pinhead), USB 3.0 x 2 (2 x external)

10. Support boot from LAN, console redirection

11. Equipped with 80 Plus Bronze PSU to decrease CO2 dissipation and protect our environment

12. LCM module to provide user-friendly interface

13. Standard 1U rackmount size

 

 

Product information:

http://www.acrosser.com/Products/Networking-Appliance/Rackmount/ANR-IB75N1/A/B/Networking-Appliance-ANR-IB75N1/A/B.html

 

 

Ordering information:

1.ANR-IB75N1: 1U Networking Rackmount Platform with PCH B75, 8 x RJ45 GbE LAN (2 pair bypass)

 

2.ANR-IB75N1A: 1U Networking Rackmount Platform with PCH B75, 8 x RJ45 GbE LAN (2 pair bypass), and 2 x Fiber ports

 

3.ANR-IB75N1B: 1U Networking Rackmount Platform with PCH B75, 8 x RJ45 GbE LAN (2 pair bypass), and 4 x Fiber ports

Contact:

http://www.acrosser.com/inquiry.html

Building, maintaining, and evolving proprietary network systems for applications

Industrial computer, Panel PC, networking appliance

In recent years, building, maintaining, and evolving proprietary network systems for telecom-grade applications that are highly available and “always on” have become increasingly prohibitive from the perspective of cost, risk management, time to revenue, and so on. The custom-built approach becomes even less cost effective as Communications Service Providers (CSPs) move toward offering cloud-based services, where they have to compete with non-traditional providers that offer such services on networks built using Commercial Off-The-Shelf (COTS) building blocks.

A change in market dynamics is causing a fundamental paradigm shift in industry’s thinking: Instead of continuing to invest precious Research and Development (R&D) resources and dollars to build expensive, special-purpose proprietary systems with the hope that they will never fail, industry leaders are now assuming that there will be hardware and software failures and thus designing systems and applications that continue to provide end-user service in the presence of such failures. 

State-of-the-art software and related standards have made significant advances in recent years to support sophisticated schemes and quick implementation of highly available applications and services that can run on relatively inexpensive COTS hardware systems. Some significant industry standardization efforts are:

  • PCI Industrial computer Manufacturers Group (PICMG), an industry consortium that creates and promotes COTS hardware standards that can be used for a variety of network applications
  • The Carrier Grade Linux effort of the Linux Foundation that has helped create a version of Linux suitable for telecom gear
  • The Service Availability Forum (SAF), whose interface specifications have long been used to develop COTS middleware that ensures uninterrupted service availability of network applications. Multiple implementations of these specifications exist, including an open source version that is available from the OpenSAF

refer to : http://xtca-systems.com/articles/engineered-cots-network-systems/

Can your gaming platform last long?

Industrial computer, Panel PC, networking appliance
Industrial computer, Panel PC, networking appliance

The first mezzanine standard to go through the VITA/ANSI process was the IndustryPack. Developed by gaming platform Computers, it was chosen by the Motorola Computer Group as the expansion mezzanine for its MVME162 SBC. The move to make IndustryPacks a standard was joined by Acromag and the VITA 4 IP Module effort was launched. Since then, no fewer than eight mezzanine standards have gone through the VITA/ANSI process to become accredited gaming platform.

Gaming platform are an important design element to many board form factors. They grew out of a necessity to gain more board real estate or to incorporate modular flexibility to the original form factor. In the early days, few, if any, standards for mezzanines existed. However, over time, standards emerged to make it easier to incorporate mezzanines into designs

refer to: http://vita-technologies.com/articles/stacked-standardizing-mezzanine-modules/

New device available in market

Industrial computer, Panel PC, networking appliance
Industrial computer, Panel PC, networking appliance
How can you miss the latest gaming product from Cactus???

The Longer Life Cactus Cycles is a key attribute for the Industrial Grade products since many Industrial, Military, Gaming, Medical and other markets have designs which need a form, fit and function solution for 7 – 15+ years. While the Consumer market demands the latest form factor such as microSD with >32GB storage capacity, many gaming Industrial systems only need from gaming 32MBytes to 16GBytes of storage in a PC Card, CompactFlash or full size SD Card form factor.

 

refer to : http://embedded-computing.com/news/benefits-industrial-flash-storage-devices/

Migrating legacy applications to multicore: Not as scary as it sounds

Industrial computer, Panel PC, networking appliance

Multicore processors bring significant performance and power usage benefits to embedded systems, but they also add the complexity of multiprocessing to the legacy migration workload. Nonetheless, development teams can successfully manage their transition to multicore by following some straightforward techniques.

Port to a portable standard

Often, migrating to multicore involves more than moving to a new processor. In many cases, developers must first port the legacy code to a new programming language, compiler, or OS. Using an open standard such as POSIX is highly recommended, in light of its support of many general-purpose and real-time operating systems. Doing so will help ensure that large portions of the application, including its interface with the OS, are portable. Just as important, the POSIX standard has a proven history in multiprocessing systems, and a multicore processor is simply a multiprocessing System-on-Chip (SoC).

Divide and conquer

The OSs that support Symmetric Multiprocessing (SMP) are the best option for homogenous multicore processors. SMP leaves the complex details of allocating CPU resources to the OS, rather than to the application. From the application’s point of view, the interface to the OS remains the same, regardless of the number of cores, from 1 to N. Consequently, the application can scale easily as more cores are added.

A multicore system running in SMP mode provides true parallelism, but some legacy applications were never designed for parallel execution. Often, large portions of the code do not use threads, which would allow different parts of the application to run in parallel or use threads only to isolate blocking system calls such as file or network I/O.

Another typical pitfall occurs when code uses a priority scheme to control access to shared memory. For instance, in a uniprocessor embedded system, the softwaredeveloper can often assume that a high-priority thread and a low-priority thread will not access the memory simultaneously, since the high-priority thread will always preempt the low-priority thread. Thus, many programs fail to use a mutual exclusion lock (mutex) to properly synchronize access to the memory. In an SMP multicore system, however, both of these threads can run in parallel and, as a result, access memory simultaneously with unpredictable results. Other insidious problems might exist due to synchronization errors that work perfectly on a single processor system but surface only in multiprocessorexecution.

To solve such problems, developers can divide and conquer: isolate the problem code on a single core of the multicore chip until the code can be fixed. To do this, developers can use Bound Multiprocessing (BMP), an extension to SMP that allows selected processes to run on only a specified core or CPU. In effect, BMP provides a single-core, nonparallel execution environment for legacy code while allowing other code to leverage the full parallelism of SMP. The development team can subsequently remove the CPU binding once they have modified the legacy code to behave properly in its new parallel environment.

Leverage the tools

Development teams must also use the right tools. In particular, they need visualization tools that help them pinpoint areas where code is misbehaving in a parallel environment. Mostly, this effort involves the detection and correction of the synchronization bugs mentioned earlier.

Once an application is operating properly, it may still fail to take advantage of all of the multicore chip’s CPU capacity. Visualization tools can help here, too, by allowing developers to reduce contention for shared resources (hot spots), eliminate excessive thread migration or communication between cores, and find opportunities for parallelizing code. As the number of cores increases in multicore platforms, visualization tools will be the key to successfully leveraging the performance benefits that multicore offers.

To provide such analysis, multicore visualization tools must reach beyond the scope of conventional debug tools. They must, for example, track threads as they migrate from one core to another and diagnose messages flowing between cores. They must also offer flexible control over which events are recorded and when, so that developers can focus on areas of concern.

Making the transition

“Multicore” does not need to be a bad word nor add another roadblock to legacy migration. Adopting portable programming standards such as POSIX, using OSs designed for multicore platforms, isolating legacy code to run on a single core, and using visualization tools all make the transition less daunting.

 

 

refer:

http://mil-embedded.com/articles/migrating-applications-multicore-not-scary-it-sounds/

Simplifying the development of M2M devices

With advances in wireless technologies, defining a strategy for building wireless M2M-enabled devices is not the dauntingly complex task it was once thought to be. Instead of devoting precious R&D resources to the integration of fragmented, ad hoc technologies, today’s developers can take advantage of increasingly sophisticated Embedded Application Frameworks (Linux, Android, and others), some of which are highly optimized for M2M application development.

Industrial computer, Panel PC, networking appliance
Industrial computer, Panel PC, networking appliance

Machine-to-Machine (M2M) communication, or the ability to connect and manage remote devices over the air, offers enormous potential. With the ability to centrally control remote industrial equipment, trackvehicle fleets, manage electric vehicle charging stations, expand the capabilities of consumer devices, and much more, M2M has profound implications for virtually every industry.

Given the novelty of M2M technology, however, developing connected devices has traditionally been an expensive and time-consuming process, largely due to the fact that system designers had to build the entire M2M architecture from scratch. Today, designers have a powerful new option in their M2M toolkit: Embedded Application Frameworks (EAFs). By deploying connected services on mature, prepackaged Real-Time Operating Systems (RTOSs) and libraries embedded directly into the communications module, M2M designers can substantially reduce the time and costs involved in developing new M2M hardware and focus their efforts on creating innovative connected applications.

 

refer:

http://embedded-computing.com/articles/embedded-frameworks-simplifying-development-m2m-devices/#utm_source=Cloud%2Bmenu&utm_medium=text%2Blink&utm_campaign=articles

Automotive industry: Innovation driven by electronics

Industrial computer, Panel PC, networking appliance
Industrial computer, Panel PC, networking appliance

High-end electronics provide drivers and passengers with in-car navigation and entertainment and information delivered over a wireless network. In fact, many car buyers today care more about the infotainment technologies embedded in the dashboard than what’s under the hood. This phenomenon is requiring additional storage space for rich multimedia data and advanced software and applications and is driving an explosive growth of both volatile and nonvolatile memories. Embedded multimedia cards are helping meet this demand in today’s memory-hungry automotives.

The automotive market is moderately but steadily growing. Global car sales rose 6 percent year-on-year in the first half of 2012, despite the ongoing headwinds associated with the sovereign debt problems in Western Europe and some moderation in the pace of global economic activity. Global sales of passenger  and light commercial vehicles are expected to grow from 78 million units in 2011 to more than 100 million units in 2018. In a recent study, Gartner confirmed that electronics are playing a major role in the advancement of automotive technology. Electronic content in cars has been steadily increasing since the first digital engine control modules were introduced in the ’80s.

Today, microelectronics enable advanced safety features, new information and entertainment services, and greater energy efficiency. The electric/electronic share of value added to a state-of-the-art  is already at 40 percent for traditional, internal combustion engine cars and jumps as high as 75 percent for electric or hybrid electric vehicles. This trend will accelerate as advances in semiconductor technology continue to drive down the cost of various electronic modules and subsystems.

 

Refer:

http://embedded-computing.com/articles/automotive-industry-innovation-driven-electronics/

Modular standards for smart, connected devices

Industrial computer, Panel PC, networking appliance
Industrial computer, Panel PC, networking appliance

The competitive market for smart, connected devices is heating up, which requires OEMs to stay focused on differentiating their products and getting to market quickly. ARM-based building blocks are enabling OEMs to reallocate the resources needed to find, install, program, and troubleshoot drivers or debug hardware and concentrate instead on their core competencies. With prevalidated platforms that are fully configured and tested to deliver the required interoperability, compatibility, and functionality, OEMs can focus on application development and reuse existing application-specific software on a flexible hardware framework.

It is a dynamic time in the embedded market, as processors and software advancements are breaking down the barriers that once limited the implementation of various computing platforms. In conjunction with these advancements, embedded computing board and module suppliers are continually enhancing their platform portfolios to take advantage of the performance, interface, functionality, and power improvements available with next-generation processor architectures.

Refer:

http://embedded-computing.com/articles/modular-scalability-smart-connected-devices/#at_pco=cfd-1.0