For COM Express to deliver real business benefit, it has to provide one other vital attribute: reliability. We are in the era of “always on” computing: The lights must never go out. And downtime means lost revenue. That’s a challenge in the harsh, hostile environments in which many critical infrastructure systems operate. Today’s connected world paradigm does not make a distinction between systems in stable environments such as offices and data centers, and systems deployed in harsh environments found in heavy industry, on factory floors, on drilling rigs, or on transportation systems.
These extreme industrial conditions require a ruggedized COM Express module. Specifically, they must operate in temperatures as low as -40 oC and as high as +85 oC – temperatures that are often found in oil and gas operations, for example. They must also withstand shock of up to 40g and extreme vibration from machinery or aircraft engines. Conformal coating is needed to resist the moisture, dust, and chemicals typical of industrial environments.
Designing, testing, qualifying, and manufacturing modular architectures for deployment in the hostile environments found in many critical infrastructure systems in industry is, therefore, a painstaking and rigorous process – but it is essential if maximum reliability and uptime are to be achieved. Modularity is helpful: By separating the processing module from the I/O carrier board, manufacturers can ensure that all the components on the processing module are specifically selected to meet application-specific extended temperature, shock, and vibration levels. It also becomes easier to test the module at maximum performance stress that can, for example, help the designers to reach an optimal heat sink solution with a uniform temperature profile early in the design cycle.
While considerable attention is paid to the design of processor modules as noted previously, the modularity of COM Express enables the development of carrier boards in parallel. Design and test engineers developing the processor module don’t have to wait until the entire carrier board is developed to verify the processor module design. This parallel – and even geographically dispersed – development can lead to lower time and cost of development while still providing a reliable solution for harsh industrial environments.
Reliable performance for today and the future
The flexibility to choose myriad differing price, power, and performance points makes the fully rugged COM Express modular architecture an outstanding choice for high-performance industrial automation applications for today’s connected world. Not only can rugged COM Express substantially lower lifetime total cost of ownership and extend the lifecycle of automation applications, they afford businesses the opportunity to harness the power and opportunity of the Industrial Internet while providing outstanding reliability.
refer to:http://industrial-embedded.com/articles/rugged-increasingly-connected-world/