From kindergarten to Kickstarter

Resurgence of the Do It Yourself (DIY) community has driven a range of open networking platforms, giving aspiring technologists cheap and easy access to embedded development. Outside of hobbyist toys and educational devices, however, “hacker” boards are increasing performance and I/O flexibility, and have become viable options for professional product development.

MinnowBoard is an Intel Atom-based platform equipped with interfaces like SATA, Gigabit Ethernet, and PCI Express, and is suited for applications such as Networking Attached Storage (NAS) and Network security, Garman says (Figure 3). “Professional embedded developers working on commercial products will like the fact that the MinnowBoard is open hardware, and can be customized without having to sign any Non-Disclosure Agreements (NDAs),” he adds.

refer to:
http://embedded-computing.com/articles/diy-pushes-open-hardware-kindergarten-kickstarter/

Quick review for 4th generation Intel® Core™ processors

The 4th generation Intel® Core™  processors

The 4th generation Intel® Core™ processors serve the embedded computing space with a new microarchitecture which Kontron will implement on a broad range of embedded computing platforms. Based on the 22 nm Intel® 3D processor technology already used in the predecessor generation, the processors, formerly codenamed ‘Haswell’, have experienced a performance increase which will doubtlessly benefit applications. Beside a 15% increased CPU performance especially the graphics has improved by its doubled performance in comparison to solutions based on the previous generation processors. At the same time, the thermal footprint has remained practically the same or has even shrunk.

With improved processing and graphics performance as well as energy efficiency and broad scalability, the 4th generation Intel® Core™ processors with its new microarchitecture provide an attractive solution for a broad array of mid-range to high-end embedded applications in target markets such as medical,  embedded computing, industrial automation, infotainment and military. This whitepaper gives engineers a closer look into the architectural improvements of the new microarchitecture and delivers the answers as to how they can integrate these most efficiently into their appliances.

refer to: http://embedded-computing.com/white-papers/white-intelr-coretm-processors/

Remote tele-health advancements

This is just one example of why telehealth strategies are poised solutions to revolutionize medicine. Telehealth not only provides quick access to specialists, but can also remotely monitor patients and reduce clinical expenses. Many of the systems needed to realize these benefits will operate on the edge, and require technology with the portability and price point of commercial mobile platforms, as well as the flexibility to perform multiple functions securely and in real time. All of this must be provided in a package that can meet the rigors of certification and scale over long lifecycle deployments.

The ability to transition between x86 and ARM processors is critical for low-volume medical applications because a single carrier board solutions – often the most costly component of a COM architecture – can suit the needs of both graphics-intensive systems and platforms that require more mobility and lower power. In addition to reducing Time-To-Market (TTM), this decreases Bill Of Materials (BOM) costs and eases Board Support Package (BSP) implementation, says Christoph Budelmann, General Manager, Budelmann Elektronik GmbH in Münster, Germany (www.budelmann-elektronik.com).

refer to: http://smallformfactors.com/articles/qseven-coms-healthcare-mobile/

In response to growing pressure to boost the performance

Embedded PC, in vehicle PC, Industrial PC

In response to growing pressure to boost the performance and trim down the size of embedded applications, standards organizations meet regularly to optimize their portfolios in light of the latest available technology. These updated standards take advantage of new silicon architecture combining multiple processors, graphics elements, and complex I/O to deliver the next generation of preengineered, off-the-shelf modules to support many of the high-performance requirements of embedded product development.

These standardized computer platforms allow designers to trade in substantial savings in Non-Recurring Engineering (NRE) and scheduling for slightly higher recurring costs. Standards-based designs also shortcut the software development effort by providing access to compatible operating systems, vendor-supplied drivers, and sample firmware.

In the Strategies section of this issue, we asked experts from several standards organizations to bring us up to date on the latest changes affecting embedded designs. Starting things off, Jim Blazer, CTO at RTD Embedded Technologies and active member of the PC/104 Consortium, presents the history and updates in work – such as the latest generation of PCI Express – that support the PC/104 stackable architecture. Citing the need for smaller and more rugged building blocks, Alexander Lockinger, President of the Small Form Factor Special Interest Group (SFF-SIG) and CTO at Ascend Electronics, covers the trends and new products to expect in 2013. In addition, Jerry Gipper, Director of Marketing at VITA and Editorial Director ofVITA Technologies magazine, reports on the recent Embedded Tech Trends 2013 meeting aboard the Queen Mary and standards work in progress, plus some new technologies such as optical interconnects.