Embedding the World Cup with goal-line technology

For years, international football association FIFA have heavily resisted technology’s influence in soccer, almost comically arguing that bad refereeing decisions are all part of the excitement of the game. FIFA president Sepp Blatter has described goal-line technology as “only 95 percent accurate”, though even that level of accuracy – when compared to a human eye, often tens of metres away – is surely a vast improvement?

For networking appliance technologists, even if this disputable 95 percent figure was to be believed, bridging that 5 percent gap was never a sizeable task. Though in 2008 following that statement, the FIFA president put the implementation of such technology on ice – permanently.

Predictably, subsequently further controversial decisions ensued, though in relatively low-key matches not on the international stage, and in March 2010 an election was held between eight of the founding bodies of soccer – voting 6-2 in favor of permanently ditching the technology, the two dissenters being England and Scotland.

In June that year at the 2010 FIFA World Cup the tide was about to turn, when hundreds of millions of fans across 241 separate countries saw England’s Frank Lampard score a goal – the ball clearly over a metre across the line – against Germany, which was disallowed due to human error by the referee. Scoring or missing was a turning point in the 2-1 game, which ended as a 4-1 loss for England. The entire embedded computer industry, quickly followed by immense global supporters!  Taking huge pressure on FIFA, and shortly after Blatter announced that the goal-line technology consideration would be re-opened.

The tech contenders
In 2011 FIFA began internal trials with 10 companies’ goal-line embedded system technology, and by 2012 they whittled this down to two potential candidates: Goal Ref, utilizing a passive “chip-in-ball” and a magnetic field to detect its whereabouts; and Hawk-Eye, utilizing a series of high-resolution cameras and triangulation algorithms.

Both have a very high, though interestingly unpublished, accuracy percentage, but neither could claim 100 percent accuracy as both are fallible to some degree.

Through networking appliance technology based on electromagnetic fields, which is being used at the 2014 World Cup, it would be susceptible to interference an unscrupulous party could theoretically interfere with its accuracy.

The high-speed-camera-based system, you could argue, is less vulnerable to outside interference, though is reliant on installation accuracy and calibration, having rigorously proven the calculations used to derive the Embedded Computer decisions.

Additionally, in the 2014 World Cup referees are wearing smartwatches as part of a GoalControl-4D system to alert them to goal-line technology cameras detecting goals.

Both systems also can’t consider the change in shape of a ball when it bounces, for example. The Hawk-Eye system, prior to soccer, has long been employed in snooker (similar to billiards), cricket, and tennis. Bounce distortion in soccer, given we’re concerned with it passing a line, not falling short of it, isn’t relevant – in tennis however this can be contentious; during the 2008 Wimbledon final, a ball that appeared out was cited as “in” by Hawk-Eye by a single millimeter.

refer to:


Opening Doors to Embedded Automation

At the ultra-clean and newly expanded MINOR’s food processing plant in Cleveland a forklift picks up a bin of their product and carries it into the next room along the line, entering through an airlock to minimize the entry of automation pathogens into the packaging area. But unlike most facilities the forklifts here never take a break other than for a battery charge because there is no one sitting in the driver’s single board computer.

Nor is there a driver activating door operation. The signal to open and close is generated by the same process management system directing forklift travel.

MINOR’S has joined the growing ranks of companies that are putting automation material handling (AMH) vehicles to work, seeking increases in productivity and lower operating costs. A recent article in Fast Company on embedded SBC pending reveals that scientists are developing a embedded SBC that has already logged 500,000 miles. So it’s no surprise in the more controllable world of the manufacturing plant and with industry’s growing need for efficiency, speed and reliability; embedded system will be acquiring minds of their own.

The recently released Material Handling and Logistics US Roadmap, complied by the national supply chain publications and associations, looks at the industry ten years into the future. Among the ten megatrends unfolding in the next decade, the report predicts that “autonomous control and distributed intelligence” could one day extend to driverless equipment in the warehouse and over the road.

Engine maker  envisions unmanned  embedded SBC cargo ships, though many in the industry don’t think they will be sailing any time soon. Nevertheless, these technological changes will be driven by a changing embedded system, the growth of e-commerce, mass personalization and of course never-ceasing competition – all of which have impact on the factory or single board computer.

Industry  automation isn’t waiting for 2025. A report published by the Priority Metrics Group detailed that AMH vehicle sales exceeded $15.5 billion world-wide in 2011, up 18% over the previous year. This represents roughly 15% of the investment in new equipment.However, these vehicles also cannot wait for the doors within the plant to get out of the way.

Within these plants are walls sectioning off rooms; and like walls, doors are supposed to preserve the integrity of the processes or the inventories in the room while allowing traffic to pass in and out of the room. Just about every room maintains its own microclimate with a proper temperature. Humidity and air flow are controlled for whatever process takes place or for the product handled within it.

Doors ensure that these areas maintain those conditions, protecting the room from pressure differentials, extreme temperatures sparks, fumes, drafts, noise or other conditions in the previous room that could adversely affect work in process, employee productivity and building energy costs. But if the doors can’t get out of the way in time, progress goes nowhere.

To keep pace with embedded system that demand this speed, the doors along the material path must be able to do the following:

Open and Close Rapidly – The lumbering automation panel door is a thing of the past. For any door to be a member of today’s material handling team it must be an overhead roll up style to get out of the way of vehicles and to attain the high speeds necessary for efficient product flow. These single board computer also take up minimal wall space to maximize these areas for shelving or machinery.

These doors now are capable of speeds of 60 inches per second and faster, and can be fully opened in under two seconds for a typical eight-foot high door embedded system. The rapid roll up door minimizes room exposure, giving practically no time for energy to escape or contaminants to invade.

At MINOR’S ultra-pure food processing facility, their specially designed automated single board computer from one room to another. The concern of process engineers at this operation is to minimize contaminants throughout the processing chain. To maintain product quality, entrance/exit is through an airlock

refer to: