IT managers are under increasing pressure ….

 IT managers are under increasing pressure to boost network capacity and performance to cope with the data deluge. Networking systems are under a similar form of stress with their performance degrading as new capabilities are added in software. The solution to both needs is next-generation System-on-Chip (SoC) communications processors that combine multiple cores with multiple hardware acceleration engines.

 

The data deluge, with its massive growth in both mobile and enterprise network traffic, is driving substantial changes in the architectures of base stations, routers, gateways, and other networking systems. To maintain high performance as traffic volume and velocity continue to grow, next-generation communications processors combine multicore processors with specialized hardware acceleration engines in SoC ICs.

The following discussion examines the role of the SoC in today’s network infrastructures, as well as how the SoC will evolve in coming years. Before doing so, it is instructive to consider some of the trends driving this need.

In-Vehicle Computer. single board computer, Industrial PC

 

 

refer:http://embedded-computing.com/articles/next-generation-architectures-tomorrows-communications-networks/

In response to growing pressure to boost the performance

Embedded PC, in vehicle PC, Industrial PC

In response to growing pressure to boost the performance and trim down the size of embedded applications, standards organizations meet regularly to optimize their portfolios in light of the latest available technology. These updated standards take advantage of new silicon architecture combining multiple processors, graphics elements, and complex I/O to deliver the next generation of preengineered, off-the-shelf modules to support many of the high-performance requirements of embedded product development.

These standardized computer platforms allow designers to trade in substantial savings in Non-Recurring Engineering (NRE) and scheduling for slightly higher recurring costs. Standards-based designs also shortcut the software development effort by providing access to compatible operating systems, vendor-supplied drivers, and sample firmware.

In the Strategies section of this issue, we asked experts from several standards organizations to bring us up to date on the latest changes affecting embedded designs. Starting things off, Jim Blazer, CTO at RTD Embedded Technologies and active member of the PC/104 Consortium, presents the history and updates in work – such as the latest generation of PCI Express – that support the PC/104 stackable architecture. Citing the need for smaller and more rugged building blocks, Alexander Lockinger, President of the Small Form Factor Special Interest Group (SFF-SIG) and CTO at Ascend Electronics, covers the trends and new products to expect in 2013. In addition, Jerry Gipper, Director of Marketing at VITA and Editorial Director ofVITA Technologies magazine, reports on the recent Embedded Tech Trends 2013 meeting aboard the Queen Mary and standards work in progress, plus some new technologies such as optical interconnects.